
SAND88-1431
Unlimited Release
Printed ???? 19??

ALGEBRA—
A Program That Algebraically

Manipulates the Output of a Finite
Element Analysis

(EXODUS Version)

Amy P. Gilkey
Applied Mechanics Division III

Sandia National Laboratories, Albuquerque NM

Abstract

TheALGEBRA program allows the user to manipulate data from a finite ele-
ment analysis before it is plotted. The finite element output data is in the form
of variable values (e.g., stress, strain, and velocity components) in an EXO-
DUS database. TheALGEBRA program evaluates user-supplied functions of
the data and writes the results to an output EXODUS database which can be
read by plot programs.

Distribution Category
UC-32

ACKNOWLEDGEMENTS

The original version ofALGEBRA was written by Mary R.
Sagartz and Johnny H. Biffle [bib:oldalg].

The version ofALGEBRA described in [bib:seaalg] manip-
ulates a SEACO database [bib:seaco].

3

Contents

1 Introduction .. 4

2 Equation Input ... 6
2.1 The Assigned Variable .. 6
2.2 Restricting the Nodes and/or Elements ... 7
2.3 Constants ... 7
2.4 Variables ... 7
2.5 Operators ... 8
2.6 Functions ... 9

3 Command Input ... 12
3.1 Database Editing Commands .. 13
3.2 Variable Selection Commands .. 13
3.3 Time Step Selection Commands ... 14
3.4 Mesh Limiting Commands ... 17
3.5 Element Block Selection Commands .. 17
3.6 Information and Termination Commands ... 18

4 The Output EXODUS Database .. 20

5 Informational and Error Messages .. 22

6 Executing ALGEBRA ... 24
6.1 Execution Files .. 24
6.2 Special Software ... 24

A The EXODUS Database Format.. 28

B Summary of Functions.. 32

C Command Summary .. 34

D Sample Session .. 38

E Site Supplements ... 40

4

ram
gram,
he new

y the
vailable
most

s]. The

h time

s are

tep in

sis at

 step
alues

block
pecific
ble has

e
inates,
gram,

evious
lgebraic

in the

s. This
ul name
1 Introduction

TheALGEBRA program allows the user to manipulate data from a finite element prog
before it is plotted. The program reads the database output from an analysis pro
manipulates the data using algebraic expressions supplied by the user, and writes t
data to a database to be processed by a plot program such as BLOT [bib:blot].

The program’s algebraic evaluations allow special functions that are not provided b
analysis program (such as principal values, effective stress, and pressure) to be a
for plotting. The evaluations include all of the FORTRAN arithmetic operations and
of the FORTRAN functions plus several special functions.

Both the input and output databases are in the EXODUS database format [bib:exodu
EXODUS format defines four types of variables:

• A history variable has a value representative of the system as a whole at eac
step (e.g., the total energy).

• A global variable is the same as a history variable except that global variable
only included in “whole” time steps (explained below).

• A nodal variable has a value for every node of the mesh at each whole time s
the analysis (e.g., the displacement in the x-direction).

• An element variable has a value for every element of the finite element analy
each whole time step (e.g., the stress in the x-direction).

There are two types of time steps in an EXODUS database: a “history-only” time
contains the values for the history variables only; a “whole” time step includes the v
for all the variables (history, global, nodal, and element).

Each element in the database is assigned to an “element block”. An element
distinguishes a material or an element type (such as a truss or quadrilateral). A s
element variable may be undefined for some element blocks, meaning that the varia
no value for elements in that element block.

The algebraic expressions to be evaluated inALGEBRA depend on the values from th
input database. These input values include the time of the time step, the nodal coord
and the history, global, nodal, and element variables calculated by the analysis pro
including values at specific nodes or elements. The values of variables from the pr
database time step or the first database time step may also be referenced in the a
expressions. History, global, nodal, and element variables are created byALGEBRA in the
output database, with the variable type determined by the types of variables
expression being evaluated.

The EXODUS database format includes the names of the coordinates and variable
allows the user to reference the input variables by name and to associate a meaningf
with calculated data.
5

l nodal
 plot

tions.
d with

ase.
tabase.
tion of
There are two or three (depending on the number of dimensions in the mesh) specia
variables which contain the displacement components at each node. The BLOT
program [bib:blot] expects these variables to follow certain order and naming conven
These variables must be the first nodal variables and they must start with “D” and en
the last letter of the corresponding coordinate name.

ALGEBRA allows the user to restrict the information that is written to the output datab
The time steps to be written may be selected from those available on the input da
The size of the output mesh may be limited by giving the nodal coordinates of a sec
the mesh or by selecting elements by element block.
6

 is very
, fol-
tants,

re

umeric
 with a

 output

pes of

.

lue is

 and

ts and
e types
2 Equation Input

The expressions to be evaluated are entered by the user as equations. The syntax
similar to FORTRAN equation syntax. The first item is the variable to be assigned
lowed by an “=”, then the expression to be evaluated. The expression consists of cons
variables, arithmetic operators, and functions.

The equations must adhere to the following syntax rules.

• Blanks are treated as delimiters, but are otherwise ignored.

• Either lowercase or uppercase letters are acceptable, but lowercase letters a
converted to uppercase.

• A “ ’ ” character in any equation starts a comment. The “’ ” and any characters
following it on the line are ignored.

• An equation may be continued over several lines with a “>” character. The “>” and
any characters following it on the current line are ignored and the next line is
appended to the current line.

2.1 The Assigned Variable

The assigned variable name must start with a letter and can be up to eight alphan
characters (A–Z, 0–9) long. A name that is longer than eight characters is truncated
warning. Blanks cannot be embedded in a variable name.

All assigned variables (except temporary variables specified by aDELETE command) will
be written to the output database. The input database variables are not written to the
database unless they are assigned in an equation (such asX = X) or transferred with a
SAVE command.

The type of the assigned variable depends on the expression. There are four ty
“quantities” in an expression that are related to the variable types:

• History quantities include history variables, constants, and the time step time

• Global quantities include global variables and nodal or element variables for
specific nodes or elements.

• Nodal quantities include nodal variables and nodal coordinates, unless the va
limited to a specific node.

• Element quantities include element variables, unless the value is limited to a
specific element.

History and global quantities are referred to as “single-value” quantities. Nodal
element quantities are referred to as “arrays”.

Each part of an expression yields a result of a particular type. The types of constan
variables are defined above. The type of an arithmetic operation is dependent on th
7

istory
lts. If
ity and
perator
 of its
special

ations

ble type

le type,

 out-

rther
ed

for an

d for
s such

.4E3).
should
of its operands. If both operands are history quantities, the operation yields a h
quantity. If the operands are global and/or history quantities, a global quantity resu
either operand is an array, the operation type is the array type. Thus a nodal quant
an element quantity cannot appear in the same operation. For array operations, the o
is applied to each array element. The type of a function is dependent on the types
parameters. The rules for operand types also apply to all function parameters. One
type of function yields a global quantity regardless of the parameter type.

Equations that result in a history variable are evaluated for each time step. Equ
resulting in other types of variables are evaluated only for “whole” time steps.

The assigned variable can be reassigned, but it must be assigned to the same varia
(history, global, nodal or element).

The equations are evaluated in order. The assigned variables are grouped by variab
but are otherwise output in the order they are first assigned by the equations.

2.2 Restricting the Nodes and/or Elements

Nodes and/or elements may be deleted from the input database with theZOOM or VISI-
BLE commands. An input variable is defined for all input nodes and/or elements. An
put variable is only defined for the nodes and/or elements to be output.

Element variables may be undefined for certain element blocks. This may be fu
restricted with theBLOCKS command. If two or more element variables are combin
with an operator or are function parameters, the resulting variable is only defined
element block if all the variables involved are defined for that block.

When an operation or function is performed on an array variable, it is only performe
the defined nodes/elements. This is done to prevent problems with numerical error
as divide by zero for undefined values.

2.3 Constants

Constants can be entered in any legal FORTRAN numeric format (e.g., 5, 5.4 or 5
All integers are converted to real numbers. If the constant is signed, parenthesis
surround the sign and constant.

2.4 Variables

The variables that may be found in the expression to be evaluated are:

• any input database history, global, nodal or element variable,

• the values for any coordinate,

• a reference to a specific nodal or element quantity,

• the time associated with each time step, and
8

e, the

an input

r

l or
iables.
fined at

 to the

tput
 variable

on refer
ed. For
re

and
s as

efore

lose the
• any previously assigned variable.

If an embedded blank is included in an input database variable or coordinate nam
blank must be deleted in references to the variable. For example, variable “SIG X” must be
entered as “SIGX”.

The coordinates may be referenced in the expression by name. They are treated as
database nodal variable whose value remains constant in all “whole” time steps.

If the value for a specific node or element is desired, a “$” and the node or element numbe
is appended to the variable name. For example,SIGR$40 refers to the value for the \nth
40th element of variableSIGR. A specifier may be appended to the name of any noda
element quantity in an expression, including coordinates and previously assigned var
References to specific nodes and/or elements can only be made if the variable is de
that node and/or element.

The value of a variable in the previous time step is referenced by appending a “:” to the
variable name. The value in the first time step is referenced by appending a “:1” to the
variable name. If time steps are selected, the previous and first time steps refer
selected time steps, not the input time steps.

The name “TIME” is reserved for the time associated with each time step. The ou
database times are copied from the input database unless a value is assigned to the
TIME. TheTIME expression must evaluate to a history quantity.TIME may also appear in
the expression, referring to the input or assigned database time.

The equations are evaluated in order. References to a variable name in the expressi
to the last assigned value, or to the input variable if the name has not been assign
example, if input global variableCONST has a value of 4 and the following equations a
executed,

X = CONST
CONST = 2*CONST
Y = CONST

the result isX equals 4,CONST equals 8, andY equals 8.

2.5 Operators

The legal operations are addition (+), subtraction (-), multiplication (*), division (/),
exponentiation (**). The operands may be either single-value or array quantitie
explained in Section [Ref: assvar] .

FORTRAN operator precedence rules apply (e.g., multiplication is performed b
addition). Parenthesis may be used to change the order of evaluation.

Two operators cannot be placed in succession. To precede a value with a sign, enc
sign and value in parenthesis. For example,
9

ented
The
ed. The
ef: ass-

e as the
 as the

s in

f a

etric

sor.
A = -5 * -SIN(0.5)

should be written as
A = (-5) * (-SIN(0.5))

where the parenthesis around the-5 are optional.

2.6 Functions

Many of the standard FORTRAN functions and several special functions are implem
in ALGEBRA . These functions are summarized in Appendix [Ref: appx:function] .
parameters for any function may be expressions and all parameters must be suppli
parameters may be either single-value or array quantities as explained in Section [R
var] .

A function in an equation is distinguished from a variable name by the “(” which follows
the function name. This allows the user to assign variable names which are the sam
function names and to reference input database variables with the same names
functions.

 FORTRAN Functions

The standard FORTRAN functions implemented are:AINT, ANINT, ABS, MOD, SIGN,
DIM, MAX, MIN, SQRT, EXP, LOG, LOG10, SIN, COS, TAN, ASIN, ACOS, ATAN,
ATAN2, SINH, COSH, andTANH. The use and result of these functions is the same a
FORTRAN, and the same restrictions apply.

Tensor Principal Values and Magnitude Functions

FunctionsPMAX andPMIN calculate the maximum and minimum principal values o
symmetric tensor. For example, to obtain the maximum principal values for a tensorT,

SMAX = PMAX (T
11

, T
22

, T
33

, T
12

, T
23

, T
31

).

For a two-dimensional tensor or a tensor using cylindrical coordinates for an axisymm
solution,PMAX2 andPMIN2 may be used:

SMAX = PMAX2 (T
11

, T
22

, T
12

).

The functionTMAG calculates the magnitude of the deviatoric part of a symmetric ten
To calculate the magnitude of tensorT,

SMAG = TMAG (T
11

, T
22

, T
33

, T
12

, T
23

, T
31

)

where the following calculation is made:

SMAG = √(T
11

 - T
22

)2 + (T
22

 - T
33

)2 + (T
33

 - T
11

)2 + 6 * (T
12

2 + T
23

2 + T
31

2).
10

c-
n
nction

e false

ay

ion if

ime
 that
urrent
or
To obtain the von Mises stress, the value supplied by functionTMAG is multiplied by the
constant 1/√2. To calculate effective strain, multiply by the constant√2.0/3.0.

IF Functions

The functionsIFLZ, IFEZ, andIFGZ provide a simple if-then-else capability. Each fun
tion expects three parameters: a condition, a true result, and a false result. FunctioIFLZ
returns the true result if the condition evaluates to less than zero; otherwise the fu
returns the false result. FunctionIFEZ checks for equal to zero andIFGZ checks for
greater than zero. For example, the equation

x = IFLZ (cond , rtrue , rfalse)

with global parameterscond, rtrue, andrfalse could be implemented in FORTRAN by
IF (cond .LT. 0.0) THEN x = rtrue ELSE x = rfalse END IF

All the parameters are evaluated before the function, so both the true result and th
result are evaluated even though only one is needed.

Array ⇒ Global Variable Functions

The functionsSUM, SMAX, andSMIN perform a calculation on a nodal or element arr
parameter which produces a global result.SUM sums all the array values.SMAX and
SMIN return the maximum and minimum of all the array values.

Values for specific nodes and/or elements are only included in the function calculat
the variable is defined at that node and/or element.

Envelope Functions

An “envelope” function performs a calculation that is cumulative for all previous t
steps. The functionENVMAX results in an array (assuming the parameter is an array)
is the maximum of each array value for all previous selected time steps and the c
time step. On the last time step,ENVMAX contains the maximum of each array value f
all selected time steps.ENVMIN is the corresponding minimum function.
11

12

s are in

re

e is

r of

nough

. Most
mand-
s for

 be in

 with
y
he

ut the

wn as
phics
s the
 by
3 Command Input

The user can issue a command whenever an equation is expected. The command
free-format and must adhere to the following syntax rules.

• Valid delimiters are a comma or one or more blanks.

• Either lowercase or uppercase letters are acceptable, but lowercase letters a
converted to uppercase.

• A “ ’ ” character in any command line starts a comment. The “’ ” and any characters
following it on the line are ignored.

• A command may be continued over several lines with an “>” character. The “>”
and any characters following it on the current line are ignored and the next lin
appended to the current line.

Each command has an action keyword or “verb” followed by a variable numbe
parameters.

The command verb is a character string. It may be abbreviated, as long as e
characters are given to distinguish it from other commands.

The meaning and type of the parameters is dependent on the command verb
command parameters are optional. If an optional parameter field is blank, a com
dependent default value is supplied. Below is a description of the valid entrie
parameters.

• A numeric parameter may be a real number or an integer. A real number may
any legal FORTRAN numeric format (e.g.,1, 0.2, -1E-2). An integer parameter
may be in any legal integer format.

• A string parameter is a literal character string. Most string parameters may be
abbreviated.

• Variable names must be fully specified. The blank delimiter creates a problem
database variable names with embedded blanks. The program handles this b
deleting all embedded blanks from the input database names. For example, t
variable name “SIG R” must be entered as “SIGR”. The blank must be deleted in
any references to the variable. All database names appear in uppercase witho
embedded blanks in all displays.

• Screen and mesh positions may be selected with the graphics cursor (also kno
the graphics locator). Cursor input is device-dependent and uses the VDI gra
locator routines. When the program prompts for the position, the user position
graphics cursor (e.g., the crosshairs) on the screen, then selects the position
pressing any printable keyboard character (e.g., the space bar). \fi

The notation conventions used in the command descriptions are:

• The command verb is inbold type.
13

n

s

mma

of a
initial

n
r

• A literal string is in all uppercaseSANSERIF type and should be entered as show
(or abbreviated).

• The value of a parameter is represented by the parameter name initalics.

• A literal string in square brackets (“[]”) represents a parameter option which i
omitted entirely (including any following comma) if not appropriate. These
parameters are distinct from most parameters in that they do not require a co
as a place holder to request the default value.

• The default value of a parameter is in angle brackets (“< >”). The initial value
parameter set by a command is usually the default parameter value. If not, the
setting is given with the default or in the command description.

The commands are summarized in Appendix [Ref: appx:command] .

3.1 Database Editing Commands

TITLE

TITLE sets the title to be written to the output database. The title is input on the
next line. If noTITLE command is issued, the input database title is written to the
output database.

3.2 Variable Selection Commands

SAVE variable
1
, variable

2
, ... or option

1
, option

2
, ... <No Default>

SAVE transfers variables from the input database to the output database. A
individual variable may be transferred by listing its name as a parameter. Fo
example,

SAVE Y, Z

has the same effect as the equations (with the exception noted below):

Y = Y Z = Z.

Assigned variables are affected by theBLOCKS command;SAVEd variables are
not.

The followingoptions transfer sets of variables:

SAVE HISTORY transfers all input database history variables.

SAVE GLOBAL transfers all input database global variables.

SAVE NODAL transfers all input database nodal variables.

SAVE ELEMENT transfers all input database element variables.
14

y

 writ-
 written

i
e. If
t the

 time

e.

e first
SAVE ALL transfers all input database history, global, nodal, and element
variables.

The SAVE command causes the variables to be output in the same order the
would be if they were assigned by equations at that point.

If a SAVEd variable is also an assigned variable, the assigned value is written to
the output database, regardless of whether theSAVE is done before or after the
assignment.

DELETE variable
1
, variable

2
, ... <No Default>

DELETE marks an assigned variable as a temporary variable that will not be
written to the output database. A variable must be assigned (orSAVEd) before it
is listed in aDELETE command.

3.3 Time Step Selection Commands

ALGEBRA allows the user to restrict the time steps from the input database that are
ten to the output database. By default, all the time steps from the input database are
to the output database.

Time step selection is performed in one of the following modes:

• \ifx ALGEBRA \BLOT \bold Interval-Times Mode \else Interval-Times Mode \f
selects time steps at uniform intervals between a minimum and a maximum tim
this mode has a delta offset, the first selected time is not the minimum time, bu
minimum time plus the interval. If this mode has a zero offset, the first selected
is the minimum time.

• \ifx ALGEBRA \BLOT \bold All-Available-Times Mode \else All-Available-
Times Mode \fi selects all time steps between a minimum and a maximum tim

• \ifx ALGEBRA \BLOT \bold User-Selected-Times Mode \else User-Selected-
Times Mode \fi selects time steps which are explicitly specified by the user.

The nearest time step from the database is chosen for each selected time.

The following are the time step selection parameters: \negmedskip

• tmin is the minimum selected time,

• tmax is the maximum selected time,

• nintv is the number of selected time intervals, and

• delt is the selected time interval.

In the interval-times mode, up tonintv time steps at intervaldelt betweentmin andtmax are
selected. The mode may have a delta offset or a zero offset. With a delta offset, th
selected time istmin+delt; with a zero offset, it istmin.
15

ified

r-
e.

r-
e.

r

d
nterval

d
nterval
In the interval-times mode with a delta offset, the number of selected time intervalsnintv
and the selected time intervaldelt are related mathematically by the equations:

delt = (tmax-tmin) / nintv (1)

nintv = int ((tmin-tmax) / delt) (2)

With a zero offset,nintv anddelt are related mathematically by the equations:

delt = (tmax-tmin) / (nintv-1) (1)

nintv = int ((tmin-tmax) / delt) + 1 (2)

The user specifies eithernintv or delt. If nintv is specified,delt is calculated using equation
1. If delt is specified,nintv is calculated using equation 2.

In the all-available-times mode, all database time steps betweentmin andtmax are selected
(parametersnintv and delt are ignored). In the user-selected-times mode, the spec
times are selected (all parameters are ignored).

TMIN tmin <minimum database time>

TMIN sets the minimum selected timetmin to the specified parameter value. If the use
selected-times mode is in effect, the mode is changed to the all-available-times mod

In interval-times mode, ifnintv is selected (by aNINTV or ZINTV command),delt is
calculated. Ifdelt is selected (by aDELTIME command),nintv is calculated.

TMAX tmax <maximum database time>

TMAX sets the maximum selected timetmax to the specified parameter value. If the use
selected-times mode is in effect, the mode is changed to the all-available-times mod

In interval-times mode, ifnintv is selected (by aNINTV or ZINTV command),delt is
calculated. Ifdelt is selected (by aDELTIME command),nintv is calculated.

NINTV nintv <10 or the number of database time steps - 1,> whichever is smalle

NINTV sets the number of selected time intervalsnintv to the specified parameter value an
changes the mode to the interval-times mode with a delta offset. The selected time i
delt is calculated.

ZINTV nintv <10 or the number of database time steps,> whichever is smaller

ZINTV sets the number of selected time intervalsnintv to the specified parameter value an
changes the mode to the interval-times mode with a zero offset. The selected time i
delt is calculated.

DELTIME delt <(tmax-tmin) / (nintv-1), wherenintv is 10> or the number of
database time steps, whichever is smaller
16

es
 time

e step

es are
mes are

e

 time

mands
DELTIME sets the selected time intervaldelt to the specified parameter value and chang
the mode to the interval-times mode with a zero offset. The number of selected
intervalsnintv is calculated.

ALLTIMES

ALLTIMES changes the mode to the all-available-times mode.

TIMES [ADD,] t
1
, t

2
, ... <no times selected>

TIMES changes the mode to the user-selected-times mode and selects timest
1
, t

2
, etc. The

closest time step from the database is selected for each specified time.

Normally, a TIMES command selects only the listed time steps. IfADD is the first
parameter, the listed steps are added to the current selected times. Any other tim
selection command clears allTIMES selected times.

Up to the maximum number of time steps in the database may be specified. Tim
selected in the order encountered on the database, regardless of the order the ti
specified in the command. Duplicate references to a time step are ignored.

STEPS [ADD,] n
1
, n

2
, ... <no steps selected>

The STEPS command is equivalent to theTIMES command except that it selects tim
steps by the step number, not by the step time.

HISTORY ON or OFF <ON>

HISTORY controls whether history time steps are SEACAS/included in the selected
steps (ifON) or only whole time steps (ifOFF).

For example, if the times from the database are 0.0, 0.5, 1.0, 1.5, etc.\null , the com
TMIN 0.0 TMAX 5.0 NINTV 5

select times 1.0, 2.0, 3.0, 4.0, and 5.0. If theNINTV command is replaced by
ZINTV 3

then times 0.0, 2.5, and 5.0 are selected. If theNINTV command is replaced by
DELTIME 2.0

then times 0.0, 2.0, 4.0 are selected.

Another example is given in Appendix [Ref: appx:example] .
17

 nodes
ent is
tions.
abase to

ust

rick)

hat is
ining

e set.

ions.
. This
iously
3.4 Mesh Limiting Commands

These commands limit the mesh that is written to the output database by deleting
and elements that do not satisfy the limiting conditions. A deleted node or elem
entirely removed from the output database and is ignored in all equation evalua
Deleting nodes and elements may cause the nodes and elements on the output dat
be numbered differently than those on the input database.

If both theZOOM andVISIBLE commands are in effect, the nodes and elements m
satisfy both the limiting conditions to be written to the output database.

By default, the entire mesh is written to the output database.

ZOOM xmin, xmax, ymin, ymax, zmin, zmax <No Default>

ZOOM sets the limits of the mesh to be written to the output database. Limitsxmin toxmax
apply to the first coordinate,ymin to ymax to the second coordinate, andzmin to zmax to
the third coordinate (if any). A node is deleted if it is not within the rectangle (or b
defined by these limits. An element is deleted if all of its nodes are deleted.

VISIBLE [ADD or DELETE,]block_id
1
, block_id

2
, ... <all element blocks>

VISIBLE limits the element blocks to be written to the output database. An element t
not in a “visible” element block is deleted. A node is deleted if all the elements conta
the node are deleted.

The block_id refers to the element block identifier (displayed by theLIST BLOCKS
command).

If there is no parameter, all element blocks are visible. If the first parameter isADD or
DELETE, the element blocks listed are added to or deleted from the current visibl
Otherwise, only the element blocks listed in the command are visible.

3.5 Element Block Selection Commands

BLOCKS [ADD or DELETE,]block_id
1
, block_id

2
, ... <all element blocks>

BLOCKS selects the element blocks which have defined values for all following equat
An element variable can be defined for an element block only if that block is selected
command can only mark element variables as undefined, it cannot mark prev
undefined variables as defined. It has no effect on nodal variables.

The BLOCKS command affects all following equations unless anotherBLOCKS
command is entered. TheBLOCKS command has no effect on the output ofSAVEd
element variables.
18

d set.

 input

itle; the
ets; and

block
nd the
The block_id refers to the element block identifier (displayed by theLIST BLOCKS
command).

If there is no parameter, all element blocks are selected. If the first parameter isADD or
DELETE, the element blocks listed are added to or deleted from the current selecte
Otherwise, only the element blocks listed in the command are selected.

MATERIAL [ADD or DELETE,]block_id
1
, block_id

2
, ... <all element blocks>

MATERIAL is exactly equivalent to aBLOCKS command.

3.6 Information and Termination Commands

SHOW command <no parameter>

SHOW displays the settings of parameters relevant to thecommand. For example,SHOW
TMIN displays the time step selection criteria.

SHOW with no parameters displays any nondefault command parameters and all
equations.

LIST option <no parameter>

LIST displays database information, depending on theoption.

\cmdoptionLIST VARS

displays a summary of the database. The summary SEACAS/includes the database t
number of nodes, elements, and element blocks; the number of node sets and side s
the number of variables.

\cmdoptionLIST BLOCKS orMATERIAL

displays a summary of the element blocks. The summary SEACAS/includes the
identifier, the number of elements in the block, the number of nodes per element, a
number of attributes per element.

\cmdoptionLIST QA

displays the QA records and the information records.

\cmdoptionLIST NAMES

displays the names of the history, global, nodal, and element variables.

\cmdoptionLIST STEPS
19

 as the

d all

uation

utput
displays the number of time steps and the minimum and maximum time step times.

\cmdoptionLIST TIMES

displays the step numbers and times for all time steps on the database.

HELP option <no parameter>

HELP displays information about theALGEBRA program, depending on theoption.

\cmdoptionHELP RULES

displays a summary of the equation syntax rules.

\cmdoptionHELP COMMANDS

displays a summary of the commands.

\cmdoptionHELP FUNCTIONS

lists the names of all available functions and displays some useful equations, such
equation for effective strain.

\cmdoptionHELP

lists the availableHELP options and displays any nondefault command parameters an
input equations.

LOG

LOG requests that the log file be saved when the program is exited. Each correct eq
and command that the user enters (excluding informational commands such asSHOW) is
written to the log file.

END

END ends the equation input and begins the equation evaluation. The word “EXIT” may
be used in place of “END”.

QUIT

QUIT ends the equation input and exits the program immediately without writing an o
database.
20

. The
 data-
e ele-
 side
 all the

lement

e input

cord is
re

moved.
 copied
ssigned

lement
his is

h time
d. For a

whole
4 The Output EXODUS Database

The EXODUS database format is briefly described in Appendix [Ref: appx:exodus]
first part of the EXODUS database consists of the mesh description in the GENESIS
base format [bib:genesis]. The mesh description includes the nodal coordinates, th
ment block information (including the element connectivity), the node sets, and the
sets. The second part of the database contains the time step information, including
variable values for each time step.

If nodes and/or elements have been deleted from the database with aZOOM or VISIBLE
command, the entire output database reflects the deletions and any node or e
renumbering caused by the deletions.

The output database mesh description is copied (with changes for deletions) from th
database. The database title may be changed with theTITLE command.

All QA records from the input database are copied to the output database, and a re
added describing the currentALGEBRA run. All input database informational records a
copied to the output database.

All names on the output database are in uppercase and have all embedded blanks re
The coordinate and element block names from the input database are converted and
(with changes for deletions) to the output database. The output variable names are a
in the equations.

The output database element variable truth table has an entry for each output e
variable which indicates whether the variable is defined for each element block. T
determined by the input element variable truth table, the equations, and theBLOCKS
command.

The output time steps include the time step times and the output variables for eac
step. Each selected input time step is processed; non-selected time steps are ignore
history-only time step, only the history variables are evaluated and written out. For a
time step, all variables are evaluated and written to the output database.
21

22

forma-
tabase
uations

steps,

 while

ge is

 error
s time
ntil the

 but the

error is
fect). If
iently
ay be

es the
inted.
 is not
ef:

atabase
y error
output
fore the

a fatal
error is
5 Informational and Error Messages

ALGEBRA operates in three stages: (1) it scans the input database for general in
tion, (2) it inputs commands and equations from the user, (3) it re-reads the input da
and copies the mesh description to the output database, and (4) it evaluates the eq
for each time step.

ALGEBRA expects a valid database. If a format error is discovered before the time
the program prints an error of the following format: \errfmtDATABASE ERROR -
Readingdatabase item

and aborts. This problem may occur either while scanning the input database or
copying the mesh description to the output database.

If a format error is found while reading the time steps, the following error messa
printed: \errfmtWARNING - End-of-file during time steps orDATABASE ERROR -
Readingdatabase item.

If this error is encountered while scanning the input database, the time step with the
and all following time steps are ignored, but the program continues and the previou
steps are available for processing. Some database errors may not be detected u
equations are being evaluated. The program aborts when the error is encountered,
output database is correct for all previous time steps.

An equation is checked for syntax errors as soon as the user enters the line. If an
found, a message is printed and the equation is ignored (with a message to that ef
only a warning is printed, the equation is accepted. If the message is not suffic
informative, the description of the equation syntax (Chapter [Ref: chap:equation]) m
helpful.

A command is performed as soon as it is entered. A command error usually caus
command to be ignored. The command is usually performed if only a warning is pr
The display after the command shows the effect of the command. If the message
sufficiently informative, the appropriate command description (Chapter [R
chap:command]) may be helpful.

The evaluation loop processes each time step by reading the needed input d
variables, evaluating the equations, and writing the results to the output database. An
during this stage causes the program to abort (with a fatal error message). The
database is readable, but it contains only the data from the time steps processed be
error.

A numerical error while evaluating the equations (such as divide by zero) causes
error. A message is printed describing the error and the equation that caused the
displayed after the error message.
23

out of

ystem.
mple,

r of
 may

xceeds a
onsor
The program allocates memory dynamically as it is needed. If the system runs
memory, the following message is printed: \errfmtFATAL ERROR - Too much dynamic
memory requested

and the program aborts. The user should first try to obtain more memory on the s
Another solution is to run the program in a less memory-intensive fashion. For exa
entering fewer equations may require less memory.

ALGEBRA has certain programmer-defined limitations (for example, the numbe
curves that may be defined. The limits are not specified in this manual since they
change. In most cases the limits are chosen to be more than adequate. If the user e
limit, a message is printed. If the user feels the limit is too restrictive, the code sp
should be notified so the limit may be raised in future releases ofALGEBRA .
24

tem
al
for all

AME

-

 set.
6 Executing ALGEBRA

The details of executingALGEBRA are dependent on the system being used. The sys
manager of any system that runsALGEBRA should provide a supplement to this manu
that explains how to run the program on that particular system. Site supplements
currently supported systems are in Appendix [Ref: appx:site] .

6.1 Execution Files

The table below summarizesALGEBRA ’s file usage.

Description Unit Number Type File Format

User input standard input input Section [Ref: chap:equation] and [Ref:
chap:command]

User output standard output output ASCII

EXODUS database 11 input Appendix [Ref: appx:exodus]

EXODUS database 12 output Appendix [Ref: appx:exodus]

Log file 99 optional output ASCII

All files must be connected to the appropriate unit beforeALGEBRA is run. Each file
(except standard input and output) is opened with the name retrieved by the EXN
routine of the SUPES library [bib:supes].

6.2 Special Software

ALGEBRA is written in ANSI FORTRAN-77 [bib:f77] with the exception of the follow
ing system-dependent features:

• the OPEN options for the files and

• the use of ASCII characters that are not in the FORTRAN standard character

ALGEBRA uses the following software packages:

• the SUPES package [bib:supes] which SEACAS/includes dynamic memory
allocation, a free-field reader, and FORTRAN extensions and
25

26

am
N-

the

Code

f a

SIS

: A
NLA

 Ver-
90–
References

[bib:oldalg]Mary R. Sagartz and Johnny H. Biffle, “ALGEBRA – A Computer Progr
That Algebraically Manipulates Finite Element Output Data,” SAND80-2061, \S
LA , September 1980.

[bib:seaalg]Amy P. Gilkey, “ALGEBRA – A Program That Algebraically Manipulates
Output of a Finite Element Analysis,” SAND86-0881, \SNLA , May 1986.

[bib:seaco]Zelma E. Beisinger, “SEACO: Sandia Engineering Analysis Department
Output Data Base,” SAND84-2004, \SNLA , in preparation.

[bib:blot]Amy P. Gilkey, “BLOT – A Mesh and Curve Plot Program for the Output o
Finite Element Analysis,” SAND88-1432, \SNLA , in preparation.

[bib:genesis]Lee M. Taylor, Dennis P. Flanagan, and William C. Curran, “The GENE
Finite Element Mesh File Format,” SAND86-0910, \SNLA , May 1986.

[bib:exodus]William C. Mills-Curran, Amy P. Gilkey, Dennis P. Flanagan, “EXODUS
Finite Element File Format for Pre- and Post-Processing,” SAND87-2997, \S
, in preparation.

[bib:f77]American National Standard Programming Language FORTRAN, American Na-
tional Standards Institute, ANSI X3.9-1978, New York, 1978.

[bib:supes]John R. Red-Horse, William C. Curran, and Dennis P. Flanagan, “SUPES
sion 2.1 – A Software Utility Package for the Engineering Sciences ,” SAND
0247, \SNLA , May 1990.
27

28

ENE-
A The EXODUS Database Format

The following code segment reads an EXODUS database. The first segment is the G
SIS database format.

C --Open the EXODUS database file
 NDB = 9
 OPEN (UNIT=NDB, ..., STATUS=’OLD’, FORM=’UNFORMATTED’)
C --Read the title
 READ (NDB) TITLE
C --TITLE - the title of the database (CHARACTER*80)
C --Read the database sizing parameters
 READ (NDB) NUMNP, NDIM, NUMEL, NELBLK,
 & NUMNPS, LNPSNL, NUMESS, LESSEL, LESSNL, NVERSN
C --NUMNP - the number of nodes
C --NDIM - the number of coordinates per node
C --NUMEL - the number of elements
C --NELBLK - the number of element blocks
C --NUMNPS - the number of node sets
C --LNPSNL - the length of the node sets node list
C --NUMESS - the number of side sets
C --LESSEL - the length of the side sets element list
C --LESSNL - the length of the side sets node list
C --NVERSN - the file format version number
C --Read the nodal coordinates
 READ (NDB) ((CORD(INP,I), INP=1,NUMNP), I=1,NDIM)
C --Read the element order map (each element must be listed once)
 READ (NDB) (MAPEL(IEL), IEL=1,NUMEL)
C --Read the element blocks
 DO 100 IEB = 1, NELBLK
C --Read the sizing parameters for this element block
 READ (NDB) IDELB, NUMELB, NUMLNK, NATRIB
C --IDELB - the element block identification (must be unique)
C --NUMELB - the number of elements in this block
C -- (the sum of NUMELB for all blocks must equal NUMEL)
C --NUMLNK - the number of nodes defining the connectivity
C -- for an element in this block
C --NATRIB - the number of element attributes for an element
C -- in this block
C --Read the connectivity for all elements in this block
 READ (NDB) ((LINK(J,I), J=1,NUMLNK, I=1,NUMELB)
C --Read the attributes for all elements in this block
 READ (NDB) ((ATRIB(J,I), J=1,NATRIB, I=1,NUMELB)
 100 CONTINUE
C --Read the node sets
 READ (NDB) (IDNPS(I), I=1,NUMNPS)
C --IDNPS - the ID of each node set
 READ (NDB) (NNNPS(I), I=1,NUMNPS)
C --NNNPS - the number of nodes in each node set
 READ (NDB) (IXNNPS(I), I=1,NUMNPS)
C --IXNNPS - the index of the first node in each node set
C -- (in LTNNPS and FACNPS)
 READ (NDB) (LTNNPS(I), I=1,LNPSNL)
29

er of
C --LTNNPS - the nodes in all the node sets
 READ (NDB) (FACNPS(I), I=1,LNPSNL)
C --FACNPS - the factor for each node in LTNNPS
C --Read the side sets
 READ (NDB) (IDESS(I), I=1,NUMESS)
C --IDESS - the ID of each side set
 READ (NDB) (NEESS(I), I=1,NUMESS)
C --NEESS - the number of elements in each side set
 READ (NDB) (NNESS(I), I=1,NUMESS)
C --NNESS - the number of nodes in each side set
 READ (NDB) (IXEESS(I), I=1,NUMESS)
C --IXEESS - the index of the first element in each side set
C -- (in LTEESS)
 READ (NDB) (IXNESS(I), I=1,NUMESS)
C --IXNESS - the index of the first node in each side set
C -- (in LTNESS and FACESS)
 READ (NDB) (LTEESS(I), I=1,LESSEL)
C --LTEESS - the elements in all the side sets
 READ (NDB) (LTNESS(I), I=1,LESSNL)
C --LTNESS - the nodes in all the side sets
 READ (NDB) (FACESS(I), I=1,LESSNL)
C --FACESS - the factor for each node in LTNESS

A valid GENESIS database may end at this point or at any point until the numb
variables is read.
C --Read the QA header information
 READ (NDB, END=900) NQAREC
C --NQAREC - the number of QA records (must be at least 1)
 DO 110 IQA = 1, MAX(1,NQAREC)
 READ (NDB) (QATITL(I,IQA), I=1,4)
C --QATITL - the QA title records; each record contains:
C -- 1) analysis code name (CHARACTER*8)
C -- 2) analysis code qa descriptor (CHARACTER*8)
C -- 3) analysis date (CHARACTER*8)
C -- 4) analysis time (CHARACTER*8)
 110 CONTINUE
C --Read the optional header text
 READ (NDB, END=900) NINFO
C --NINFO - the number of information records
 DO 120 I = 1, NINFO
 READ (NDB) INFO(I)
C --INFO - extra information records (optional) that contain
C -- any supportive documentation that the analysis code
C -- developer wishes (CHARACTER*80)
 120 CONTINUE
C --Read the coordinate names
 READ (NDB, END=900) (NAMECO(I), I=1,NDIM)
C --NAMECO - the coordinate names (CHARACTER*8)
C --Read the element type names
 READ (NDB, END=900) (NAMELB(I), I=1,NELBLK)
C --NAMELB - the element type names (CHARACTER*8)

The GENESIS section of the database ends at this point.
30

C --Read the history, global, nodal, and element variable information
 READ (NDB, END=900) NVARHI, NVARGL, NVARNP, NVAREL
C --NVARHI - the number of history variables
C --NVARGL - the number of global variables
C --NVARNP - the number of nodal variables
C --NVAREL - the number of element variables
 READ (NDB)
 & (NAMEHV(I), I=1,NVARHI),
 & (NAMEGV(I), I=1,NVARGL),
 & (NAMENV(I), I=1,NVARNP),
 & (NAMEEV(I), I=1,NVAREL)
C --NAMEHI - the history variable names (CHARACTER*8)
C --NAMEGV - the global variable names (CHARACTER*8)
C --NAMENV - the nodal variable names (CHARACTER*8)
C --NAMEEV - the element variable names (CHARACTER*8)
 READ (NDB) ((ISEVOK(I,J), I=1,NVAREL), J=1,NELBLK)
C --ISEVOK - the name truth table for the element blocks;
C -- ISEVOK(i,j) refers to variable i of element block j;
C -- the value is 0 if and only if data will NOT be output for
C -- variable i for element block j (otherwise the value is 1)
C --Read the time steps
 130 CONTINUE
 READ (NDB, END=900) TIME, HISTFL
C --TIME - the time step value
C --HISTFL - the time step type flag:
C -- 0.0 for all variables output ("whole" time step) else
C -- only history variables output ("history-only" time step)
C
 READ (NDB) (VALHV(IVAR), IVAR=1,NVARGL)
C --VALHV - the history values for the current time step
 IF (HISTFL .EQ. 0.0) THEN
 READ (NDB) (VALGV(IVAR), IVAR=1,NVARGL)
C --VALGV - the global values for the current time step
 DO 140 IVAR = 1, NVARNP
 READ (NDB) (VALNV(INP,IVAR), INP=1,NUMNP)
C --VALNV - the nodal variables at each node
C -- for the current time step
 140 CONTINUE
 DO 160 IBLK = 1, NELBLK
 DO 150 IVAR = 1, NVAREL
 IF (ISEVOK(IVAR,IBLK) .NE. 0) THEN
 READ (NDB) (VALEV(IEL,IVAR,IBLK),
 & IEL=1,NUMELB(IBLK))
C --VALEV - the element variables at each element
C -- for the current time step
 END IF
 150 CONTINUE
 160 CONTINUE
 END IF
C --Handle time step data
 ...
 GOTO 130
 900 CONTINUE
C --Handle end of file on database ...
31

32

B Summary of Functions

Standard FORTRAN Functions

r = AINT (x) truncation: |x|

r = ANINT (x) nearest integer: [x + .5*sign(x)]

r = ABS (x) absolute value: |x|

r = MOD (x, y) remainder:x - y * [x/y]

r = SIGN (x, y) transfer of sign: |x| signy

r = DIM (x, y) positive difference:x - min(x,y)

r = MAX (x, y, ...) maximum ofx, y, ...

r = MIN (x, y, ...) minimum ofx, y, ...

r = SQRT (x) square root:√x

r = EXP (x) exponentiation: ex

r = LOG (x) natural logarithm: log
e
x

r = LOG10 (x) common logarithm: log
10

x

r = SIN (x) sinex

r = COS (x) cosinex

r = TAN (x) tangentx

r = ASIN (x) arc sinex

r = ACOS (x) arc cosinex

r = ATAN (x) arc tangentx

r = ATAN2 (x, y) arc tangentx/y

r = SINH (x) hyperbolic sinex

r = COSH (x) hyperbolic cosinex

r = TANH (x) hyperbolic tangentx

Tensor Principal Values and Magnitude Functions

r = PMAX (T
11

, T
22

, T
33

, T
12

, T
23

, T
31

) maximum principal values

r = PMIN (T
11

, T
22

, T
33

, T
12

, T
23

, T
31

) minimum principal values

r = PMAX2 (T
11

, T
22

, T
12

) maximum principal values (2D)

r = PMIN2 (T
11

, T
22

, T
12

) minimum principal values (2D)

r = TMAG (T
11

, T
22

, T
33

, T
12

, T
23

, T
31

) magnitude of the deviatoric part

IF Functions

r = IFLZ (cond, rtrue, rfalse) if cond < 0.0,rtrue elserfalse

r = IFEZ (cond, rtrue, rfalse) if cond = 0.0,rtrue elserfalse
33

r = IFGZ (cond, rtrue, rfalse) if cond > 0.0,rtrue elserfalse

Array ⇒ Global Variable Functions

r = SUM (x) sum ofx over all nodes or elements

r = SMAX (x) maximum ofx over all nodes or elements

r = SMIN (x) minimum ofx over all nodes or elements

Envelope Functions

r = ENVMAX (x) maximum ofx over all previous time steps

r = ENVMIN (x) minimum ofx over all previous time steps
34

output
C Command Summary

Database Editing Commands (page [Pageref: cmd:dbedit])

\cmdsumTITLE

sets the title to be written to the output database.

Variable Selection Commands (page [Pageref: cmd:varsel])

\cmdsumSAVE variable
1
, variable

2
, ... oroption

1
, option

2
, ...

transfers variables from the input database to the output database.

\cmdsumDELETE variable
1
, variable

2
, ...

marks an assigned variable as a temporary variable that will not be written to the
database.

Time Step Selection Commands (page [Pageref: cmd:timesel])

\cmdsumTMIN tmin

sets the minimum selected time totmin.

\cmdsumTMAX tmax

sets the maximum selected time totmax.

\cmdsumNINTV nintv

sets the number of selected time intervals tonintv (delta offset).

\cmdsumZINTV nintv

sets the number of selected time intervals tonintv (zero offset).

\cmdsumDELTIME delt

sets the selected time interval todelt.

\cmdsumALLTIMES

selects all time steps betweentmin andtmax.

\ifx ALGEBRA \ALGEBRA
35

.

\fi \cmdsumTIMES [ADD,] t
1
, t

2
, ...

selects timest
1
, t

2
, etc.

\cmdsumSTEPS [ADD,] n
1
, n

2
, ...

selects time stepsn
1
, n

2
, etc.

\cmdsumHISTORY ON or OFF

controls whether history time steps are SEACAS/included in the selected time steps

Mesh Limiting Commands (page [Pageref: cmd:meshlimit])

\cmdsumZOOM xmin, xmax, ymin, ymax, zmin, zmax

sets the limits of the mesh to be written to the output database.

\cmdsumVISIBLE [ADD or DELETE,] block_id
1
, block_id

2
, ...

limits the element blocks to be written to the output database.

Element Block Selection Commands (page [Pageref: cmd:blocksel])

\cmdsumBLOCKS [ADD or DELETE,] block_id
1
, block_id

2
, ...

selects the element blocks which have defined values for all following equations.

\cmdsumMATERIAL [ADD or DELETE,] block_id
1
, block_id

2
, ...

is exactly equivalent to aBLOCKS command.

Information and Termination Commands (page [Pageref: cmd:infoterm])

\cmdsumSHOW command

displays the settings of parameters relevant to thecommand.

\cmdsumLIST option

displays database information.

\cmdsumHELP option

displays information about theALGEBRA program.
36

utput
\cmdsumLOG

requests that the log file be saved when the program is exited.

\cmdsumEND

ends the equation input and begins the equation evaluation.

\cmdsumQUIT

ends the equation input and exits the program immediately without writing an o
database.
37

38

ectly

et (1.0)
d. The
elected
D Sample Session

The following is an example session withALGEBRA . Text following theALGEBRA
prompt (ALG>) is supplied by the user. The program response (if any) is shown dir
below the equation or command. Comments on the example are initalics.

ALG>LIST VARS
Database: UD:[APGILKE.EXODUS]TAPE11.EXO;1
SAMPLE DATABASE FOR ALGEBRA
Number of coordinates per node = 2
Number of nodes = 644
Number of elements = 480
Number of element blocks = 1
Number of node sets = 0
Number of side sets = 0
Code: MISCPROG version 1.0 on 12/23/85 at 10:21:59

ALG>LIST STEPS
Number of time steps = 21 (including 0 history-only)
 Minimum time = 0.00
 Maximum time = 10.00

ALG>SHOW TMAX
Select all times from 0.0 to 10.0
Number of selected times = 21

ALG> TMAX 5.0
Select all times from 0.0 to 5.0
Number of selected times = 11

ALG>NINTV 5
Select times 0.0 to 5.0 in 5 intervals with delta offset
Number of selected times = 5

These commands select up to 5 time steps between 0.0 and 5.0 starting at an offs
from 0.0. The steps with the times nearest 1.0, 2.0, 3.0, 4.0, and 5.0 are selecte
equations are evaluated and the results written to the output database only for the s
steps.

ALG>LIST NAMES
Coordinate names: R Z
Variables Names:
 History:
 Global: RESIDUAL ENERGY NORM L2NORM
 Nodal: DISPLR DISPLZ VELR VELZ ACCELR ACCELZ
 Element: SIGR SIGZ SIGT TAURZ EPSR EPST
39

ry

red.
 EPSRZ

ALG>SAVE NODAL

All the input database nodal variables (DISPLR, DISPLZ, ..., ACCELZ) will be written
unchanged to the output database (unless they are assigned a value or listed in aDELETE
command).

ALG> VONMISES = (1.0/SQRT(2.0)) * TMAG(SIGR,SIGZ,SIGT,TAURZ,0,0)
ALG> EFFSTR = SQRT(1.5) * 5.79E-3 * VONMISES**4 * EXP(-12.0/300.0*1.987)
ALG> PRESS = (SIGR + SIGZ + SIGT) / 3.0
ALG> PRESS100 = (SIGR$100 + SIGZ$100 + SIGT$100) / 3.0
ALG> PHI = EFFSTR - 0.023 - PRESS * (4.43E-8 - 3.7E-15 * PRESS)
ALG> ALPHA = SIGR$56
ALG> BETA = ALPHA + 1.414

Assign element variablesVONMISES, EFFSTR, PRESS, andPHI and global variables
PRESS100, ALPHA, andBETA. Note that thePRESS100 equation could be replaced
by “PRESS100 = PRESS$100”.

ALG>DELETE ALPHA

ALPHA (assigned in the equation “ALPHA = SIGR$56” above) becomes a tempora
variable and will not be written to the output database.

ALG>BAD = (A + 1)) + SIN (1,2)
*** Expected 1 parameter(s) for function SIN, found 2
*** Parenthesis do not balance
*** "A" is not a database variable
 Equation ignored

This equation contains several errors. Each error is flagged and the equation is igno

ALG>END

No further user input is accepted and the equation evaluation begins.
40

rs if

rs if

from
(the

s

E Site Supplements

VAX VMS
The command to executeALGEBRA on VMS is:

\cmdALGEBRA input_database output_database user_input

Input_database is the filename of the input EXODUS database. A prompt appea
input_database is omitted. The default isTAPE11.EXO.

Output_database is the filename of the output EXODUS database. A prompt appea
output_database is omitted. The default isTAPE12.EXO.

If user_input is given, the user input is read from this file. Otherwise user input is read
SYS$INPUT (the terminal keyboard). User output is directed to SYS$OUTPUT
terminal).

ALGEBRA operates in either interactive or batch modes.

CRAY CTSS
To executeALGEBRA , the user must have selected theacclib library and be runningccl.

The command to executeALGEBRA on CTSS is:

algebra input_database output_database i=input o=output

Input_database is the filename of the input EXODUS database. The default istape11.

Output_database is the filename of the output EXODUS database. The default istape11.

User input is read frominput, which defaults totty (the terminal keyword). User output i
directed tooutput, which defaults totty (the terminal).
41

	1 Introduction
	2 Equation Input
	2.1 The Assigned Variable
	2.2 Restricting the Nodes and/or Elements
	2.3 Constants
	2.4 Variables
	2.5 Operators
	2.6 Functions

	3 Command Input
	3.1 Database Editing Commands
	TITLE

	3.2 Variable Selection Commands
	SAVE variable1, variable2, ... or option1, option2...
	DELETE variable1, variable2, ... <No Default>

	3.3 Time Step Selection Commands
	3.4 Mesh Limiting Commands
	3.5 Element Block Selection Commands
	3.6 Information and Termination Commands

	4 The Output EXODUS Database
	5 Informational and Error Messages
	6 Executing ALGEBRA
	6.1 Execution Files
	6.2 Special Software
	References
	A The EXODUS Database Format
	B Summary of Functions
	C Command Summary
	Database Editing Commands (page [Pageref: cmd:dbed...
	Variable Selection Commands (page [Pageref: cmd:va...
	Time Step Selection Commands (page [Pageref: cmd:t...
	Mesh Limiting Commands (page [Pageref: cmd:meshlim...
	Element Block Selection Commands (page [Pageref: c...
	Information and Termination Commands (page [Pagere...

	D Sample Session
	E Site Supplements
	VAX VMS
	\cmd ALGEBRA input_database output_database user_i...
	CRAY CTSS

	algebra input_database output_database i=input o=o...

	Contents
	1 Introduction 4
	2 Equation Input 6
	2.1 The Assigned Variable 6
	2.2 Restricting the Nodes and/or Elements 7
	2.3 Constants 7
	2.4 Variables 7
	2.5 Operators 8
	2.6 Functions 9
	3 Command Input 12
	3.1 Database Editing Commands 13
	3.2 Variable Selection Commands 13
	3.3 Time Step Selection Commands 14
	3.4 Mesh Limiting Commands 17
	3.5 Element Block Selection Commands 17
	3.6 Information and Termination Commands 18
	4 The Output EXODUS Database 20
	5 Informational and Error Messages 22
	6 Executing ALGEBRA 24
	6.1 Execution Files 24
	6.2 Special Software 24
	A The EXODUS Database Format 28
	B Summary of Functions 32
	C Command Summary 34
	D Sample Session 38
	E Site Supplements 40

	ALGEBRA— A Program That Algebraically Manipulates ...
	Amy P. Gilkey
	Applied Mechanics Division III
	Sandia National Laboratories, Albuquerque NM
	Abstract

